华中科技大学集成电路学院段国韬教授团队在MEMS气体传感芯片晶圆级制造领域取得新进展

来源:HUST集成电路学院 #华中科大# #MEMS# #气体传感#
1098

随着“超越摩尔”范式的演进,微机电系统(MEMS)作为集成多种传感和执行功能的关键技术,已成为下一代智能传感应用核心。然而,如何将高性能纳米材料可靠地集成到三维悬浮MEMS架构中,实现晶圆级兼容制造,一直是制约高性能MEMS气体传感芯片发展的长期挑战。

近日,华中科技大学集成电路学院段国韬教授团队针对这一难题,提出了一种全新的“先成膜,后释放”(film-first, cantilever-later)全流程晶圆级制造方法,转变了本领域划片后集成材料的常规思路,成功实现了纳米材料与三维MEMS传感芯片的高效集成。研究成果以“Wafer-level self-assembly and interface passivation patterning technology for nanomaterial-compatible 3D MEMS sensing chips”为题发表在《Nano-Micro Letters》( https://doi.org/10.1007/s40820-026-02080-4),第一作者为集成电路学院2025届博士张征,工作得到了国家重点研发计划项目资助(2020YFB2008701)。

研究团队自主开发了晶圆级自组装设备,支持8英寸晶圆纳米颗粒液面自组装工艺。通过自组装过程动力学控制,由湿化学合成的纳米颗粒可形成致密、均匀的单层薄膜,并无损转移至8英寸晶圆表面。该策略将材料合成、退火与成膜、转移过程解耦,可有效调控纳米材料结构以实现优异传感性能,同时避免破坏预先制备的MEMS器件结构。面对纳米薄膜在MEMS悬臂梁释放过程中的失效问题,研究团队通过理论计算与实验结合揭示出界面失效机制,进而引入HfO2界面钝化层,有效阻断腐蚀液对界面的攻击。

在上述基础上,研究团队成功实现了基于Pd/SnO2纳米颗粒的MEMS氢气传感芯片8英寸晶圆制造。芯片充分展现了MEMS器件小尺寸和低功耗优势,同时保留有纳米材料高灵敏、快响应优势,并具有晶圆级别的高一致性。该方法可以通过纳米材料结构和自组装过程调控、薄膜图案定制,进一步增强芯片的综合传感性能。

该项研究工作建立了一套完整的气体传感芯片晶圆级制造方法和具体工艺,解决了业内长期困扰的高性能纳米材料和三维悬空MEMS结构不兼容的关键难题,将推动高性能纳米材料MEMS气体传感芯片产业化。

图 纳米材料图案化和MEMS气体传感芯片晶圆级制造技术

责编: 集小微
来源:HUST集成电路学院 #华中科大# #MEMS# #气体传感#
THE END
关闭
加载

PDF 加载中...